Skip to content

Vectoreverything

The journey to tensors begins with scalars and vectors.

  • Home
  • About
  • Blog
  • Facebook
  • Twitter
  • Instagram

Diagonal Matrix

A Square Matrix is a Diagonal Matrix if the only nonzero elements are on the northwest to southeast diagonal.

 \begin{bmatrix} 2.54 && 0 && 0 && 0 \\ 0 && 2.54 && 0 && 0 \\ 0 && 0 && 2.54 && 0 \\ 0 && 0 && 0 && 1 \end{bmatrix}

Identity Matrix for Three Dimensions:

 \begin{bmatrix} 1 && 0 && 0 \\ 0 && 1 && 0 \\ 0 && 0 && 1 \end{bmatrix}

Appendix A

The matrix multiplication of two diagonal matrices is commutative:

 \begin{bmatrix} a_{11} && 0 && 0 \\ 0 && a_{22} && 0 \\ 0 && 0 && a_{33} \end{bmatrix} \begin{bmatrix} b_{11} && 0 && 0 \\ 0 && b_{22} && 0 \\ 0 && 0 && b_{33} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} && 0 && 0 \\ 0 && a_{22}b_{22} && 0 \\ 0 && 0 && a_{33}b_{33} \end{bmatrix}

 \begin{bmatrix} b_{11} && 0 && 0 \\ 0 && b_{22} && 0 \\ 0 && 0 && b_{33} \end{bmatrix} \begin{bmatrix} a_{11} && 0 && 0 \\ 0 && a_{22} && 0 \\ 0 && 0 && a_{33} \end{bmatrix} = \begin{bmatrix} b_{11}a_{11} && 0 && 0 \\ 0 && b_{22}a_{22} && 0 \\ 0 && 0 && b_{33}a_{33} \end{bmatrix}

 \begin{bmatrix} a_{11}b_{11} && 0 && 0 \\ 0 && a_{22}b_{22} && 0 \\ 0 && 0 && a_{33}b_{33} \end{bmatrix} = \begin{bmatrix} b_{11}a_{11} && 0 && 0 \\ 0 && b_{22}a_{22} && 0 \\ 0 && 0 && b_{33}a_{33} \end{bmatrix}

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Facebook (Opens in new window) Facebook
Like Loading...
  • Home
  • About
  • Blog
Vectoreverything, Blog at WordPress.com.
  • Subscribe Subscribed
    • Vectoreverything
    • Already have a WordPress.com account? Log in now.
    • Vectoreverything
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Copy shortlink
    • Report this content
    • View post in Reader
    • Manage subscriptions
    • Collapse this bar
%d